443 research outputs found

    Optimal design of water distribution systems using many-objective visual analytics

    Get PDF
    Copyright © 2013 American Society of Civil EngineersThis paper reports the use of many-objective optimization for water distribution system (WDS) design or rehabilitation problems. The term many-objective optimization refers to optimization with four or more objectives. The increase in the number of objectives brings new challenges for both optimization and visualization. This study uses a multiobjective evolutionary algorithm termed the epsilon Nondominated Sorted Genetic Algorithm II (εεε-NSGAII) and interactive visual analytics to reveal and explore the tradeoffs for the Anytown network problem. The many-objective formulation focuses on a suite of six objectives, as follows: (1) capital cost, (2) operating cost, (3) hydraulic failure, (4) leakage, (5) water age, and (6) fire-fighting capacity. These six objectives are optimized based on decisions related to pipe sizing, tank siting, tank sizing, and pump scheduling under five different loading conditions. Solving the many-objective formulation reveals complex tradeoffs that would not be revealed in a lower-dimensional optimization problem. Visual analytics are used to explore these complex tradeoffs and identify solutions that simultaneously improve the overall WDS performance but with reduced capital and operating costs. This paper demonstrates that a many-objective visual analytics approach has clear advantages and benefits in supporting more informed, transparent decision-making in the WDS design process

    Classical and quantum properties of a 2-sphere singularity

    Full text link
    Recently Boehmer and Lobo have shown that a metric due to Florides, which has been used as an interior Schwarzschild solution, can be extended to reveal a classical singularity that has the form of a two-sphere. Here the singularity is shown to be a scalar curvature singularity that is both timelike and gravitationally weak. It is also shown to be a quantum singularity because the Klein-Gordon operator associated with quantum mechanical particles approaching the singularity is not essentially self-adjoint.Comment: 10 pages, 1 figure, minor corrections, final versio

    On the nature of ferromagnetism in diluted magnetic semiconductors: GaAs:Mn, GaP:Mn

    Full text link
    A microscopic Hamiltonian for interacting manganese impurities in diluted magnetic semiconductors (DMS) is derived. It is shown that in p -type III-V DMS the indirect exchange between Mn impurities has similarities with the Zener mechanism in transition metal oxides. Here the mobile holes and localized states near the top of the valence band play the role of unoccupied oxygen orbitals which induce ferromagnetism. The Curie temperature estimated from the proposed kinematic exchange agrees with recent experiments on GaAs:Mn. The model is also applicable to the GaP:Mn system.Comment: 10 pages, 3 figures. Submitted to Europhysics Letters, June 25, 200

    Group-based Relaxation Response Skills Training for pharmacologically-resistant depressed and anxious patients

    Get PDF
    Background: Drug-resistance for depression and anxiety is a major limitation in the treatment of these common disorders, and adjunct support interventions may be beneficial in the treatment of these patients. Aims: The purpose of this study was to evaluate the effects of a short-term (8 session) Relaxation Response Skills Training (RRST) programme for a population of psychiatric outpatients with anxiety and mood disorders who were unresponsive to drug treatment, and to test the feasibility of this intervention as complementary treatment for a psychiatric setting. Method: Forty patients were measured for overall psychopathological symptoms, depression, and anxiety, and were then given an 8-week course of RRST, while continuing their pharmacological treatment. Following the RRST intervention, participants were again assessed. Results: The results demonstrated reductions in overall symptoms (large effect size and reasonable clinically significant change), and also in depression and anxiety (medium effect sizes and clinically significant change). Conclusions: These results suggest that this short-term RRT offers a simple and cost-effective way to augment drug management for participants with common psychiatric disorders who are less responsive to the drug treatment

    On time-dependent AdS/CFT

    Full text link
    We clarify aspects of the holographic AdS/CFT correspondence that are typical of Lorentzian signature, to lay the foundation for a treatment of time-dependent gravity and conformal field theory phenomena. We provide a derivation of bulk-to-boundary propagators associated to advanced, retarded and Feynman bulk propagators, and provide a better understanding of the boundary conditions satisfied by the bulk fields at the horizon. We interpret the subleading behavior of the wavefunctions in terms of specific vacuum expectation values, and compute two-point functions in our framework. We connect our bulk methods to the closed time path formalism in the boundary field theory.Comment: 19 pages, v2: added reference, JHEP versio

    Various spin-polarization states beyond the maximum-density droplet: a quantum Monte Carlo study

    Full text link
    Using variational quantum Monte Carlo method, the effect of Landau-level mixing on the lowest-energy--state diagram of small quantum dots is studied in the magnetic field range where the density of magnetic flux quanta just exceeds the density of electrons. An accurate analytical many-body wave function is constructed for various angular momentum and spin states in the lowest Landau level, and Landau-level mixing is then introduced using a Jastrow factor. The effect of higher Landau levels is shown to be significant; the transition lines are shifted considerably towards higher values of magnetic field and certain lowest-energy states vanish altogether.Comment: 4 pages, 2 figures. Submitted to Phys. Rev.

    Two-band second moment model and an interatomic potential for caesium

    Full text link
    A semi-empirical formalism is presented for deriving interatomic potentials for materials such as caesium or cerium which exhibit volume collapse phase transitions. It is based on the Finnis-Sinclair second moment tight binding approach, but incorporates two independent bands on each atom. The potential is cast in a form suitable for large-scale molecular dynamics, the computational cost being the evaluation of short ranged pair potentials. Parameters for a model potential for caesium are derived and tested

    Atom capture by nanotube and scaling anomaly

    Full text link
    The existence of bound state of the polarizable neutral atom in the inverse square potential created by the electric field of single walled charged carbon nanotube (SWNT) is shown to be theoretically possible. The consideration of inequivalent boundary conditions due to self-adjoint extensions lead to this nontrivial bound state solution. It is also shown that the scaling anomaly is responsible for the existence of bound state. Binding of the polarizable atoms in the coupling constant interval \eta^2\in[0,1) may be responsible for the smearing of the edge of steps in quantized conductance, which has not been considered so far in literature.Comment: Accepted in Int.J.Theor.Phy

    Coordination and control – limits in standard representations of multi-reservoir operations in hydrological modeling

    Get PDF
    Major multi-reservoir cascades represent a primary mechanism for dealing with hydrologic variability and extremes within institutionally complex river basins worldwide. These coordinated management processes fundamentally reshape water balance dynamics. Yet, multi-reservoir coordination processes have been largely ignored in the increasingly sophisticated representations of reservoir operations within large-scale hydrological models. The aim of this paper is twofold, namely (i) to provide evidence that the common modeling practice of parameterizing each reservoir in a cascade independently from the others is a significant approximation and (ii) to demonstrate potential unintended consequences of this independence approximation when simulating the dynamics of hydrological extremes in complex reservoir cascades. We explore these questions using the Water Balance Model, which features detailed representations of the human infrastructure coupled to the natural processes that shape water balance dynamics. It is applied to the Upper Snake River basin in the western US and its heavily regulated multi-reservoir cascade. We employ a time-varying sensitivity analysis that utilizes the method of Morris factor screening to explicitly track how the dominant release rule parameters evolve both along the cascade and in time according to seasonal high- and low-flow events. This enables us to address aim (i) by demonstrating how the progressive and cumulative dominance of upstream releases significantly dampens the ability of downstream reservoir rules' parameters to influence flow conditions. We address aim (ii) by comparing simulation results with observed reservoir operations during critical low-flow and high-flow events in the basin. Our time-varying parameter sensitivity analysis with the method of Morris clarifies how independent single-reservoir parameterizations and their tacit assumption of independence leads to reservoir release behaviors that generate artificial water shortages and flooding, whereas the observed coordinated cascade operations avoided these outcomes for the same events. To further explore the role of (non-)coordination in the large deviations from the observed operations, we use an offline multi-reservoir water balance model in which adding basic coordination mechanisms drawn from the observed emergency operations is sufficient to correct the deficiencies of the independently parameterized reservoir rules from the hydrological model. These results demonstrate the importance of understanding the state–space context in which reservoir releases occur and where operational coordination plays a crucial role in avoiding or mitigating water-related extremes. Understanding how major infrastructure is coordinated and controlled in major river basins is essential for properly assessing future flood and drought hazards in a changing world

    Bessel Process and Conformal Quantum Mechanics

    Full text link
    Different aspects of the connection between the Bessel process and the conformal quantum mechanics (CQM) are discussed. The meaning of the possible generalizations of both models is investigated with respect to the other model, including self adjoint extension of the CQM. Some other generalizations such as the Bessel process in the wide sense and radial Ornstein- Uhlenbeck process are discussed with respect to the underlying conformal group structure.Comment: 28 Page
    • …
    corecore